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a b s t r a c t

R-dimensional (R-D) harmonic retrieval (HR) in colored noise, where RZ2, is required in

numerous applications including radar, sonar, mobile communications, multiple-input

multiple-output channel estimation and nuclear magnetic resonance spectroscopy.

Tensor-based subspace approaches to R-D HR such as R-D unitary ESPRIT and R-D MUSIC

provide super-resolution performance. However, they require the prior knowledge of the

number of signals. The matrix based (1-D) ESTimation ERror (ESTER) is subspace based

detection method that is robust against colored noise. To estimate the number of signals

from R-D measurements corrupted by colored noise, we propose two R-D extensions of the

1-D ESTER by means of the higher-order singular value decomposition. The first R-D ESTER

combines R shift invariance equations each applied in one dimension. It inherits and

enhances the robustness of the 1-D ESTER against colored noise, and outperforms the

state-of-the-art R-D order selection rules particularly in strongly correlated colored noise

environment. The second R-D scheme is developed based on the tensor shift invariance

equation. It performs best over a wide range of low-to-moderate noise correlation levels,

but poorly for high noise correlation levels showing a weakened robustness to colored

noise. Compared with the existing R-D ESTER scheme, both proposals are able to identify

much more signals when the spatial dimension lengths are distinct.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Multidimensional harmonic retrieval (HR) [1] has
numerous applications such as multiple-input multiple-
output (MIMO) radar imaging [2], channel estimation in
wireless communication systems [3–5], nuclear magnetic
resonance (NMR) spectroscopy [6,7], source localization
and tracking [8–12]. For example, the measurements in
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NMR spectroscopy, which is a powerful technique for
protein research in food and nutritional industries, can be
modeled as a sum of multidimensional damped sinusoids
where the frequencies and damping factors are crucial
to determining the protein structures. In MIMO radar
system, the sinusoidal parameters of the MIMO radar
data contain the position information of multiple targets
of interest such as direction-of-arrival (DoA), direction-
of-departure (DoD), time-of-arrival (ToA), and Doppler
frequency. Moreover, in wireless communications, the
extracted physical parameters from multidimensional
channel sounding measurements contain the information
about the channel characteristics such as the scatterer
distribution, dominant propagation paths, and coherence
time. They can then be exploited to adjust the channel
model parameters, or to optimize the wireless network
layout to guarantee high channel capacity.
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Tensor-based subspace approaches to R-dimensional
(R-D) HR, where RZ2, include 2-D unitary ESPRIT [13],
R-D unitary ESPRIT and its variants [14–16], R-D MUSIC
[17], multidimensional folding (MDF) [12], improved MDF
[18], R-D rank reduction estimator (RARE) [19] and
principal-singular-vector utilization for modal analysis
(PUMA) [20,21]. By taking into account the multidimen-
sional structure, these methods provide super-resolution
estimation performance. However, they rely on the a

priori knowledge of the number of signals, which is often
unknown and must be estimated from the noisy multi-
dimensional measurements. As a result, estimating the
signal number from the data is an important issue. It is
expected that reliable source enumeration is crucial to
achieving accurate parameter estimates.

For detection of the number of signals from noisy R-D
measurements, R-D order selection rules [22,23] should be
applied. In these R-D rules, the measurement tensor is
unfolded along the temporal dimension or other dimen-
sions, and the conventional matrix-based (1-D) order selec-
tion rule such as minimum description length (MDL) [24],
Akaike information criterion (AIC) [25], exponential fitting
test (EFT) [26] or random matrix theory (RMT) algorithm
[27,28] is applied in the resultant matrix for signal number
detection. By combining the information of several unfolded
matrices, the R-D rules provide an improvement in prob-
ability of correct detection (PoD). However, like their 1-D
counterparts, these methods rely on the additive white
noise assumption. In the presence of colored noise, which
is commonly encountered in HR applications [29–32], they
tend to overestimate the number of signals.

In [33], the matrix based estimation error (ESTER) has
been proposed for source enumeration from a noisy mixture
of exponentially damped or undamped complex sinusoids
(uniform 1-D HR model). By utilizing the shift invariance
property of the signal subspace spanned by the sinusoids, the
ESTER is more robust against colored noise than traditional
eigenvalue based order selection rules. Later in [34], an
improved version of ESTER called subspace-based automatic
model order selection (SAMOS) is developed by exploiting
the singular values of the signal subspace matrix. Although
with better performance, the number of identifiable signals
of SAMOS is reduced by half compared with ESTER.

To apply the ESTER for estimating the number of signals
in noisy R-D sinusoids model (uniform R-D HR model), an
R-D extension of the matrix-based ESTER is proposed [35]
by utilizing the higher-order singular value decomposition
(HOSVD) of the measurement tensor. However, it is based
on an empirical combination of the shift invariance equal-
ities in individual dimensions. As a result, its performance
is degraded in several scenarios. Moreover, the number of
identifiable signals is limited to the minimum spatial
dimension length minus 2.

In this work, we propose two multidimensional exten-
sions of the matrix-based ESTER scheme by means of the
HOSVD. The first proposal is based on the combination of R

shift invariance equations each applied in a matrix unfold-
ing. It directly extends the matrix-based ESTER [33] in a
sense that the cost function in the criterion is the product of
that of 1-D ESTER applied in each mode and is directly
related to the variance of the biased multidimensional
frequency estimates. By combining R sets of singular vectors
of the HOSVD of the measurement tensor, it has strength-
ened robustness against colored noise, and remarkably
outperforms the 1-D ESTER applied in each matrix
unfolding as well as the existing R-D ESTER [35] in
strongly correlated colored noise environment. For low-
to-moderate noise correlation levels, the performance
improvement is marginal. To further improve the perfor-
mance for low-to-moderate noise correlation levels, the
second proposal is developed based on the tensor shift
invariance equation. By including the core tensor of the
HOSVD in the subspace tensor used in the tensor shift
invariance equation, it results in more reliable perfor-
mance than the existing R-D ESTER scheme and has the
best performance for weakly or moderately correlated
colored noise. The identifiability of both proposed exten-
sions is increased to the maximum spatial dimension
length minus 2, which is a significant improvement over
[35] when the spatial dimension lengths are distinct from
each other.

The remainder of this paper is organized as follows. After
reviewing the matrix and tensor notation in Section 2, the R-
D HR data model is presented in Section 3. The matrix-based
ESTER scheme for MOS is reviewed in Section 4. Then two R-
D extensions of the matrix-based ESTER are developed in
Section 5. Simulation results in Section 6 confirm the
improved performance of the proposed R-D approaches. In
Section 7, conclusions are drawn.

2. Matrix and tensor notation

In order to facilitate the distinction between scalars,
matrices and tensors, the following notation is used:
Scalars are denoted as italic letters (a, b, y, A, B, y, a,
b, y), column vectors as lower-case bold-face letters
(a, b, y), matrices as bold-face capitals (A,B, . . .), and
tensors as bold-face calligraphic letters (A, B, y). Lower-
order parts are consistently named: the (i,j)-entry of a
matrix A is denoted as ai,j, and the ði,j,kÞ-entry of a third-
order tensor X as xi,j,k. The superscripts T and y stand for
matrix transposition and the Moore–Penrose pseudo
inverse, respectively. The JAJ2 denotes the spectral norm
of A, and J � JF denotes the Frobenius norm of a matrix or
tensor, which is defined as the square root of the sum of
squared magnitudes of all its elements.

The tensor operations are aligned with [36]: The
r-mode vectors of a tensor T 2 CI1�I2�����IR are obtained
by varying the r-th index within its range (1, . . . ,Ir) and
keeping all other indices fixed. The r-mode unfolding of T ,
symbolized by ½T �ðrÞ 2 C

Ir�ðI1I2 ���Ir�1 Irþ 1���IRÞ, is a matrix that
collects all the r-mode vectors of T . The order of the
columns is chosen in accordance with [36]. The r-mode
product of T and U 2 CJr�Ir along the r-th mode is denoted
as T �rU 2 C

I1�I2 ����Jr ����IR . It is obtained by multiplying the
r-mode unfolding of T from the left-hand side by U.
3. Data model

For the pure uniform multidimensional HR problem [1],
the noisy observations are modeled as a superposition of d
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undamped or damped R-D complex sinusoids (cisoids):

xm1 ,m2 ,...,mR ,n ¼
Xd

i ¼ 1

siðnÞ
YR

r ¼ 1

eðmr�1Þ�ðzðrÞ
i
þ j�mðrÞ

i
Þ þnðcÞm1 ,m2 ,...,mR ,n,

mr ¼ 1, . . . ,Mr , r¼ 1, . . . ,R; n¼ 1, . . . ,N, ð1Þ

where mðrÞi and zðrÞi r0 represent the frequency and damp-
ing factor of the i-th cisoid in the r-th mode, respectively.
The cisoid is undamped when zðrÞi ¼ 0 and damped when
zðrÞi o0. The si(n) denotes the complex amplitude of the i-th
cisoid at time instant n, and nðcÞm1 ,m2 ,...,mR ,n is the additive
colored noise component embedded in the measurement
process [29–32]. Here, NZ1 is the number of snapshots in
the temporal dimension. More specifically, N¼1 and N41
correspond to single-snapshot and multiple-snapshot R-D
HR problems, respectively.

In tensor form, (1) is expressed as

X ¼
Xd

i ¼ 1

aðmð1Þi ÞJ � � �JaðmðRÞi ÞJsT
i þN

ðcÞ
, ð2Þ

where X 2 CM1�M2�����MR�N is the measurement tensor that
collects all noisy samples in (1), aðmðrÞi Þ ¼ ½1,ez

ðrÞ
i
þ jmðrÞ

i ,
. . . ,eðMr�1ÞðzðrÞ

1
þ jmðrÞ

1
Þ�T represents the array steering vector of

the i-th source in the r-th mode, and si ¼ ½sið1Þ, . . . ,siðNÞ� is
the amplitude vector of the i-th source. In the absence of
noise, X is composed of the sum of d components each of
which corresponds to a rank-1 tensor. Therefore, it has rank
d. Given the noisy measurement tensor X , our goal is to
estimate the number of signals d, which is essential to high-
resolution parameter estimation.

One well known application of the above R-D HR model is
angle estimation which appears in a variety of array proces-
sing applications including radar, sonar, and mobile commu-
nications. The parameters of interest include DoA (azimuth
and/or elevation), DoD (azimuth and/or elevation), and
Doppler shift of the targets. To estimate these parameters,
shift invariant (SI) antenna arrays such as uniform linear
array (ULA), uniform rectangular array (URA), uniform cubic
array (UCuA) and hexagon-shaped ESPAR array [37] are
widely used. A ULA can provide estimates of azimuth or
elevation, while a URA can provide joint estimation of both
azimuth and elevation, as shown in Fig. 1. In passive radar/
sonar systems equipped with a URA at the receiver, the
measurements received from d far-field narrow-band signals
at azimuths yi and elevations ai, i¼ 1, . . . ,d, follow a 2-D
undamped HR model, where the spatial frequencies mðrÞi ,
or

Fig. 1. Angle (azimuth and/or elevation) estimation using shift invariant

arrays. (a) ULA. (b) URA.
r¼1,2, i¼ 1, . . . ,d, are given by

mð1Þi ¼ 2pr1 cos ðyiÞ cos ðaiÞ=l, ð3Þ

mð2Þi ¼ 2pr2 sin ðyiÞ cos ðaiÞ=l: ð4Þ

Here, r1 and r2 are the inter-element spacings of the receiving
antenna array along the x- and y-axes, respectively, and l
denotes the carrier wavelength. In active systems with SI
transmit and receive arrays, the received signals can also be
formulated as an R-D HR model after appropriate preproces-
sing [2]. One such example arises in the bistatic MIMO radar
system and will be detailed in Section 6.1.

The second important application is estimation of the
parameters of the dominant multipath components in
MIMO communication systems. In the parametric model
of double-directional MIMO channel, each path is char-
acterized by the following parameters: DoD, DoA, propa-
gation delay, Doppler shift, and complex path loss [5,38].
For SI transmit and receive arrays, the channel sounding
measurements after ideal low-pass filtering follow a
single-snapshot R-D undamped HR model [1,4]. The
parameters extracted from the channel sounding mea-
surements can be exploited to adjust the parameters of
existing channel models, to develop new realistic channel
models, and even to optimize the wireless network layout
of the MIMO system to guarantee high channel capacity.

Moreover, the 2-D NMR data obtained from exciting a
molecular system with a 2-D radio-frequency pulse sequence
can be modeled as a sum of 2-D damped cisoids [1,6]. The
amplitudes, frequencies and damping factors of the 2-D
harmonics provide information about the chemical shifts or
resonances in a molecule, couplings between nuclear dipoles,
geometric structure of the molecules and chemical exchange
between two sites. In all these applications, estimating the
number of signals is required prior to the use of state-of-the-
art high-resolution parameter estimation techniques.

Let AðrÞ, r¼ 1, . . . ,R, be the array steering matrix with
the following Vandermonde structure:

AðrÞ ¼ ½aðmðrÞ1 Þ, . . . ,aðm
ðrÞ
d Þ�

¼

1 1 � � � 1

eðz
ðrÞ
1
þ jmðrÞ

1
Þ eðz

ðrÞ
2
þ jmðrÞ

2
Þ � � � eðz

ðrÞ

d
þ jmðrÞ

d
Þ

^ ^ & ^

eðM1�1ÞðzðrÞ
1
þ jmðrÞ

1
Þ eðM2�1ÞðzðrÞ

2
þ jmðrÞ

2
Þ � � � eðMr�1ÞðzðrÞ

d
þ jmðrÞ

d
Þ

2
66664

3
77775,

ð5Þ

and S ¼ ½s1, . . . ,sd�
T 2 Cd�N collect the amplitudes of all

sources. In terms of r-mode products, (2) can be rewritten as

X ¼ IRþ1,d�1Að1Þ � � � �RAðRÞ�Rþ1ST
þN ðcÞ

, ð6Þ

where IRþ1,d represents the R-D identity tensor of size
d� d � � � � d, whose elements are equal to one when
i1 ¼ i2 ¼ � � � ¼ iRþ1 and zero otherwise.

Denoting the array steering tensor as

A ¼ IRþ1,d�1Að1Þ�2Að2Þ � � � �RAðRÞ, ð7Þ

we can express (6) in a more compact form as

X ¼A�Rþ1ST
þN ðcÞ

: ð8Þ

It is worth noting that our proposed R-D ESTER can be also
applied in the partly uniform multidimensional HR model,



K. Liu et al. / Signal Processing 93 (2013) 1976–1987 1979
where only part (but at least 2) of the factor matrices AðrÞ,
r¼ 1, . . . ,R, have a Vandermonde structure. Such a partly
uniform multidimensional HR model may appear in array
processing which employs a ULA/URA at the transmitter
while a non-uniform antenna array at the receiver, or an
antenna array with uniform spacing along one array axis
but non-uniform spacing along the other axis [1].

4. Matrix based estimation error

The matrix-based ESTER [33] is an order selection rule
that relies on the shift invariance property of the signal
subspace. It applies in R¼1 in which case the data model
of Section 3 is reduced to the matrix form. Nevertheless,
for the tensor data of RZ2, we can apply the matrix-
based ESTER to one of the first R spatial dimensions for
model order selection.

To this end, note that the array steering matrix in the
r-th mode, namely, AðrÞ, r¼ 1, . . . ,R, satisfies the so-called
shift invariance equation:

JðrÞ2 AðrÞ ¼ JðrÞ1 AðrÞ �UðrÞ ð9Þ

where JðrÞ1 2 R
ðMr�1Þ�Mr (respectively JðrÞ2 2 R

ðMr�1Þ�Mr ) is
the selection matrix formed by the first (respectively last)
ðMr�1Þ rows of an Mr �Mr identity matrix, and
U¼ diagð½ejmðrÞ

1 ,ejmðrÞ
2 , . . . ,ejmðrÞ

d �Þ is a diagonal matrix.
In practice, the array steering matrix AðrÞ is unknown, but

the singular vectors can be obtained via the singular value
decomposition (SVD) of the r-th matrix unfolding of the
measurement tensor X . Given k as the candidate value for
the signal number estimate, let UðrÞk collect the k dominant
left singular vectors associated with the k largest singular
values, and define the residual matrix as

EðrÞk ¼ JðrÞ1 UðrÞk �W
ðrÞ
k �JðrÞ2 UðrÞk , ð10aÞ

where

WðrÞk ¼ ðJ
ðrÞ
1 UðrÞk Þ

y
� JðrÞ2 UðrÞk : ð10bÞ

As shown in [33], for the under-enumeration case of
kod, the shift invariance is not satisfied, and JEðrÞk J240 is
the upper bound of the square error between the eigenva-
lues of WðrÞk and the closest eigenvalues of WðrÞd . For k¼d,
as will be shown soon, UðrÞd spans the same signal subspace
as AðrÞ, and hence there exists a non-singular matrix T r

such that UðrÞd ¼AðrÞT r , and WðrÞd ¼ T�1
r UðrÞT r satisfies

JðrÞ1 UðrÞd �W
ðrÞ
d ¼ JðrÞ2 UðrÞd . Therefore, JEðrÞd J2 ¼ 0. For the over-

enumeration case of k4d, JEðrÞk J240 since the noise
eigenvectors do not satisfy the shift invariance property.
Therefore, the global minimum of zero of JEðrÞk J2 is reached
at k¼d, and the estimated signal number, denoted by d̂1�D,
is obtained by minimizing the residual error:

d̂1�D ¼ arg min
k ¼ 1,...,minðMr�2,NÞ

JEðrÞk J2
2: ð11Þ
5. Multidimensional estimation error

In this section, we propose two multidimensional
extensions of the matrix-based ESTER by means of
the HOSVD:

X ¼S�1U1 � � � �Rþ1URþ1, ð12Þ

where S 2 CM1�M2����MR�N is the core tensor which satis-
fies the all-orthogonality conditions [36] and Ur 2 C

Mr�Mr

is the unitary matrix that consists of the r-mode singular
vectors.

The first extension is based on R matrix shift invar-
iance equations each applied in one dimension and the
relationship between Ar and Ur , r¼ 1, . . . ,R. The second
extension is based on the tensor shift invariance equation,
and the relationship between the array steering tensor A
and subspace tensor obtained from the truncated HOSVD.

5.1. R-D ESTER I

By computing the r-mode unfolding of (6) and (12), we
can show that in the noiseless case, AðrÞ and UðrÞd span the
same subspace. Therefore, there exists a non-singular
transform matrix T r 2 C

d�d, such that AðrÞ ¼UðrÞd � T r for
all modes r 2 R, where R¼ f1rrrR9Mr Zdg denotes the
set of non-degenerate modes.

According to Corollary 3 of [33], in case of under-
enumeration kod, it holds

9f̂
ðrÞ

k �f
ðrÞ
d 9rcrJEðrÞk J2, ð13Þ

where f̂
ðrÞ

k is an arbitrary eigenvalue of WðrÞk , fðrÞd is an
eigenvalue of WðrÞd that is closest to f̂

ðrÞ

k , and cr ¼ condfAðrÞg
is the upper condition number which is defined as the
ratio of the largest singular value of AðrÞ to the smallest
singular value of JðrÞ1 AðrÞ.

From (13) it follows that

YR

r ¼ 1

9f̂
ðrÞ

k �f
ðrÞ
d 9r

YR

r ¼ 1

cr �
YR

r ¼ 1

JEðrÞk J2: ð14Þ

First, assuming that M1 ¼ � � � ¼MR, we propose the R-
D ESTER I for estimating the number of signals based on
the following criterion:

d̂R�D ¼ arg min
k ¼ 1,...,minðMr�2,NÞ

ER�DðkÞ, ð15aÞ

where

ER�DðkÞ ¼
YR

r ¼ 1

JEðrÞk J2
2: ð15bÞ

By applying a similar analysis to that in [33] in each
mode individually, the global minimum of zero of ER�DðkÞ

is reached for k¼d. For kod, ER�DðkÞ40 is the upper
bound of the product of the square error between an
arbitrary eigenvalue of WðrÞk and the closest eigenvalue, in
least squares sense, of WðrÞd . While for k4d, we also have
ER�DðkÞ40 since the noise eigenvectors in each mode do
not satisfy the shift invariance property.

Note from (14) that the cost function ER�DðkÞ in R-D
ESTER I, like the matrix-based ESTER criterion, is directly
associated with the variance of the biased multidimen-
sional frequency estimates for under-enumeration. There-
fore, the R-D ESTER I reserves and boost the merits of its
1-D counterpart. In particular, it enhances the robustness
of the matrix-based ESTER against colored noise.
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When M1 ¼ � � � ¼MR is not satisfied, a sequential MOS
procedure is applied to maximize the identifiability.
Specifically, we first order Mr , r¼ 1, . . . ,R, in a way such
that Mi1 ZMi2 Z � � �ZMiR , where i1,i2, . . . ,iR are the
ordered dimensions. Then the sequential algorithm pro-
ceeds in the following steps:
1.
 Start by estimating d with Uði1Þk in the first mode:

d̂
ð1Þ

R�D ¼ arg min
k ¼ 1,...,minðMi1

�2,NÞ
JEði1Þk J2

2: ð16aÞ

where

Eði1Þk ¼ Jði1Þ1 Uði1Þk �W
ði1Þ
k �Jði1Þ2 Uði1Þk , ð16bÞ

with

Wði1Þk ¼ ðJ
ði1Þ
1 Uði1Þk Þ

y
� Jði1Þ2 Uði1Þk : ð16cÞ
2.
 If d̂
ð1Þ

R�DrMi2�2, we take advantage of Uði2Þk in the
second mode:

d̂
ð2Þ

R�D ¼ arg min
k ¼ 1,...,minðMi2

�2,NÞ
ðJEði1Þk J2 � JEði2Þk J2Þ

2, ð17Þ

where d̂
ð2Þ

R�D denotes the refined estimate.
3.
 If d̂
ð2Þ

R�DrMi3�2, Uði3Þk is exploited as well.
In general, in the r-th step,

d̂
ðrÞ

R�D ¼ arg min
k ¼ 1,...,minðMir�2,NÞ

Yr

j ¼ 1

JE
ðijÞ

k J2
2: ð18Þ

If d̂
ðrÞ

R�D4Mirþ 1
�2 or r¼R, stop.
Using the sequential MOS procedure, the R-D ESTER I
can identify ðmaxðM1, . . . ,MRÞ�2Þ signals. Note that the
number of identifiable signals of the existing R-D ESTER is
limited to ðminðM1, . . . ,MRÞ�2Þ [35]. In case the lengths of
spatial dimensions are distinct, the former has signifi-
cantly improved identifiability over the latter.

With regard to the performance, as shown in Section 6,
the superiority of the R-D ESTER I over the existing R-D
ESTER scheme consists mainly in the strongly correlated
colored noise environment. For low-to-moderate noise
correlation levels, only slight or even no performance
improvement is observed. To improve the performance
for low-to-moderate noise correlation levels, we develop
the second R-D ESTER based on the tensor shift invariance
equation.
5.2. Proposed R-D ESTER II

As shown in [15], the r-mode matrix unfoldings of A,
r¼ 1, . . . ,R, satisfy the following shift invariance equations:

A�1Jð1Þ1 �Rþ1U
ð1Þ
¼A�1Jð1Þ2 ,

A�2Jð2Þ1 �Rþ1U
ð2Þ
¼A�2Jð2Þ2 , � � �

A�RJðRÞ1 �Rþ1U
ðRÞ
¼A�RJðRÞ2 : ð19Þ
From (19), it follows that (See Appendix A):

A�1Jð1Þ1 � � � �RJðRÞ1 �Rþ1

YR

r ¼ 1

UðrÞ ¼A�1Jð1Þ2 � � � �RJðRÞ2 : ð20Þ

Eq. (20) is an extension of the matrix shift invariance
equation in (9) to the tensor case, and hence is referred to
as the tensor shift invariance equation.

Since the array steering tensor A is not available, the
HOSVD described in (12) is applied to find the subspace
tensor. After applying the low rank approximation of
order k to (12), the subspace tensor Uk is identified as

Uk ¼Sk�1Uð1Þk � � � �RUðRÞk , ð21Þ

where Sk 2 C
p1�����pR�k, and UðrÞk 2 C

Mr�pr , with pr ¼

minðMr ,kÞ for r¼ 1, . . . ,R. In the noiseless case and for
k¼d, it is shown that A and Ud are related by [15]

A ¼Ud�Rþ1T , ð22Þ

where T is a non-singular matrix.
Substituting (22) into (20), we obtain

Ud�Rþ1T�1Jð1Þ1 � � � �RJðRÞ1 �Rþ1

YR

r ¼ 1

UðrÞ

¼Ud�Rþ1T�1Jð1Þ2 � � � �RJðRÞ2 , ð23Þ

which can be rewritten as

Ud�1Jð1Þ1 � � � �RJðRÞ1 �Rþ1T�1
YR

r ¼ 1

UðrÞT ¼Ud�1Jð1Þ2 � � � �RJðRÞ2 :

ð24Þ

Let

WðGÞd ¼ T�1
YR

r ¼ 1

UðrÞT , ð25Þ

and

Uk
k ¼Uk�1Jð1Þ1 � � � �RJðRÞ1 ¼Uk �

R

r ¼ 1
rJ
ðrÞ
1 ,

Um
k ¼Uk�1Jð1Þ2 � � � �RJðRÞ2 ¼Uk �

R

r ¼ 1
rJ
ðrÞ
2 , ð26Þ

where the operator �R
r ¼ 1 denotes a compact representa-

tion of R r-mode products between a tensor and R

matrices. Eq. (24) can be expressed in a more compact
form as

Uk
d�Rþ1W

ðGÞ
d ¼Um

d : ð27Þ

Applying the ðRþ1Þ-mode unfolding to the tensors on
both sides of (27), we obtain

WðGÞd � ½U
k
d �ðRþ1Þ ¼ ½U

m
d �ðRþ1Þ: ð28Þ

Therefore

WðGÞd ¼ ½U
m
d �ðRþ1Þ � ð½U

k
d �ðRþ1ÞÞ

y: ð29Þ

Note that when kad, (24) does not hold. Therefore, the
number of signals can be estimated as

d̂R�D ¼ arg min
k ¼ 1,...,minðmaxðM1 ,...,MRÞ�2,NÞ

ER�DðkÞ, ð30aÞ

where

ER�DðkÞ ¼ Uk �
R

r ¼ 1
rJ
ðrÞ
1 �Rþ1W

ðGÞ
k �Uk �

R

r ¼ 1
rJðrÞ2

����
����

2

F

, ð30bÞ
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is the error function to be minimized, with

WðGÞk ¼ Uk �
R

r ¼ 1
rJðrÞ2

� �
ðRþ1Þ

� Uk �
R

r ¼ 1
rJ
ðrÞ
1

� �
ðRþ1Þ

 !y
: ð30cÞ

It is easy to verify that ER�DðkÞ40 for kod and k4d in
the absence of noise.

Note that the original R-D ESTER in [35] has a similar
tensor form to the proposed R–D ESTER II. However, the
former is based on a shift invariance equality that is
formed by empirically combining the shift invariance
equations in individual dimensions, and that is of similar
form to Eq. (1) except that Ud is replaced by one with an
identity core. In the latter, by means of the tensor shift
invariance equation that incorporates the core tensor of
the truncated HOSVD, a more reliable performance is
ensured. In addition, similar to R-D ESTER I, the number
of identifiable signals of the R-D ESTER II is increased up
to ðmaxðM1, . . . ,MRÞ�2Þ for NZmaxðM1, . . . ,MRÞ�2, which
is a considerable improvement over the original R-D
ESTER when the lengths of spatial dimensions are quite
different.

As shown in Section 6, for a wide range of low-to-
moderate noise correlation levels, the R-D ESTER II out-
performs the original R-D ESTER as well as R-D ESTER I.
However, for high noise correlation levels, its perfor-
mance degrades sharply, showing a weakened robustness
against colored noise. This may stem from its failure (this
also applies to the original R-D ESTER) to preserve the
inherent structure of the matrix based ESTER. To see this,
note that the cost function in the matrix based ESTER is
the spectral norm of the residual matrix EðkÞ, which for
the under-enumeration case is the upper bound of the
variance of the biased frequency estimates. Both the R-D
ESTER II and original R-D ESTER lose such a connotation in
a sense that the relationship between their cost functions
and the errors of the estimated eigenvalues is unclear.
Consequently, for strongly correlated colored noise sce-
narios, they perform not as well as the R-D ESTER I.
5.3. Computational complexity

Two dominant calculations in the ESTER are SVD and
Moore–Penrose pseudo inverse. Both operations involve
OðP2Q Þ flops for a P�Q (PrQ) matrix, provided that the
Moore–Penrose pseudo inverse is also calculated based on
the SVD. For R-D ESTER I, the computational load is equal
to or less than that of R matrix based ESTERs each applied
in a matrix unfolding of the measurement tensor. For each
matrix-based ESTER, once the singular vectors have been
obtained via the SVD of the r-mode unfolding, an efficient
algorithm derived in [33] can be used to recursively
calculate the residual matrix for all k¼ 1, . . . ,Mr�2. Such
an algorithm involves 6Mrk flops for each k, so that the
Table 1
Number of flops required in the proposed R-D

Proposed R-D ESTER I Proposed R-D ESTER

O½
PR

r ¼ 1 3MrðMr�2Þ2� O½MNð
PR

r ¼ 1 MrþNÞþ
overall complexity is 3MrðMr�2Þ2. In the original R-D
ESTER and R-D ESTER II, in addition to R SVDs of r-mode
(r¼ 1, . . . ,R) unfoldings of the measurement tensor, the
subspace tensor Uk needs to be calculated for all k. For the
R-D ESTER II, additional flops are required to compute the
core tensor S of HOSVD. The computational complexity in
terms of number of required flops of the proposed two
R-D ESTER methods and original R-D ESTER is summar-
ized in Table 1, where M¼

QR
r ¼ 1 Mr . It shows that the

matrix-based R-D ESTER I requires much smaller number
of flops than that required in the tensor-based R-D ESTER
II and original R-D ESTER, which have the same order of
complexity.
6. Simulation results

We present simulation results demonstrating the per-
formance of the proposed R-D ESTER schemes. To simu-
late the correlation in multidimensional colored noise, we
use the following noise generating model [39,40,35]:

N ðcÞ
¼N�1L1�2L2 � � � �RLR: ð31Þ

where N 2 CM1�����MR�N is a white noise tensor collecting
uncorrelated zero-mean circularly symmetric complex
Gaussian (ZMCSCG) noise samples with variance s2

n , and
Lr 2 C

Mr�Mr , r¼ 1, . . . ,R, is the correlation factor in the r-th
dimension of the colored noise tensor. The signal-to-noise
ratio (SNR) is defined as

SNR¼
JA�Rþ1STJ2

FQR
r ¼ 1 MrNs2

z

: ð32Þ

As in [35], the colored noise is modeled as a first-order
autoregressive process:

nðcÞmþ1 ¼ rr � n
ðcÞ
m þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�9rr9

2
q

� nmþ1, ð33Þ

such that the noise covariance matrix Cr ¼ Lr � L
H
r ,

r¼ 1, . . . ,R, is a function of a single variable, namely, the
correlation coefficient rr only. For example, when Mr¼3,
Cr has the following structure:

Cr ¼

1 rn
r ðrn

r Þ
2

rr 1 rn
r

r2
r rr 1

2
664

3
775: ð34Þ

It is worth noting that for other types of noise correlation
models, similar simulation results are observed.

The performance measure is the PoD, i.e., Prðd̂ ¼ dÞ. The
following schemes are used as the benchmark: the R-D
MDL/AIC [22], R-D RMT [23] with a constant confi-
dence level of a¼ 10�2, 1-D ESTER applied to each mode
unfolding of the measurement data, and original R-D
ESTER [35].
ESTER methods and original R-D ESTER.

II Original R-D ESTER

RMM2
r � O½MNð

PR
r ¼ 1 MrþNÞþMM2

r �
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Fig. 2. PoD versus SNR of Swerling II targets for source localization in

multiple-pulse, bistatic MIMO radar system. R¼2, M1 ¼M2 ¼ 8, N¼20,

d¼3. The noise correlation coefficients are r1 ¼r2 ¼ 0:125.
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Fig. 3. PoD versus SNR of Swerling II targets for source localization in

multiple-pulse, bistatic MIMO radar system. The parameter settings are

the same as those in Fig. 2 except that d¼5.
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6.1. Simulation scenario I: source localization in multiple-

pulses, bistatic MIMO radar

The MIMO radar is characterized by using multiple
antennas to simultaneously transmit linearly independent
waveforms and by utilizing multiple antennas to receive
the reflected signals. In the bistatic MIMO radar config-
uration [2], the transmit and receive arrays are separately
located by a considerable distance. The received signals
are multiplied by the inversion of the waveform matrix
(matched filtering) in order to achieve waveform diver-
sity. When a ULA/URA is used at both the transmitter and
receiver, the matched-filter output corresponds to an R-D
undamped HR model [2], namely, (1), where the spatial
frequency mðrÞi , r¼ 1, . . . ,R, is expressed as a function of the
DoA (azimuth and/or elevation) and DoD (azimuth and/or
elevation) of the i-th target, and siðnÞ ¼ bi,nejðn�1Þwi ,
n¼ 1, . . . ,N. Here, N is the number of pulses in each
coherent processing interval (CPI), bi,n is the RCS coeffi-
cient of the i-th target, and wi is the Doppler frequency
determined by

wi ¼ 2pviTp=l, ð35Þ

where vi is the velocity of the i-th target in meters
per second, Tp is the pulse duration in seconds, and l¼ 3 �
108=f c is the wavelength, with fc being the carrier
frequency.

We consider the scenario where each CPI comprises
multiple consecutive pulse periods, namely, N41. In the
Swerling I target model, the RCSs of all targets are constant
during the CPI, which means that bi,n ¼ bi, n¼ 1, . . . ,N.
Therefore, S is a Vandermonde matrix as well, and the
multiple-snapshot R-D undamped HR model can be inter-
preted as an equivalent single-snapshot ðRþ1Þ-D undamped
HR model. While in the Swerling II target model, the target
RCS is varying from pulse to pulse in a CPI.

In consistent with [2], the specific parameter settings
are set as follows. The transmitted waveforms are chosen
from the first MT rows of a 64�64 Hadamard matrix,
where MT is the number of transmit antennas. We assign
Tp ¼ 5� 10�6 and fc¼1 GHz. The ULA/URA has an inter-
element spacing of half the wavelength. The azimuth and
elevation are assumed to be drawn from a uniform
distribution in ½�p,p� and ½�p=2,p=2�, respectively. The
Kronecker colored noise is added to the noise-free
received signal prior to matched filtering. For simplicity
but without loss of generality, we assume that the noise
correlation is present in all dimensions except the tem-
poral dimension. The number of pulses in each CPI is set
as N¼20. The RCS coefficients bi,n are assumed to be
drawn from a complex Gaussian distribution with zero
mean and variance s2

bi
¼ 0:3þ0:1ði�1Þ, i¼ 1, . . . ,d. For

each SNR, the PoD is computed from 1000 independent
Monte Carlo runs.

6.1.1. Swerling II target model

First, we consider a scenario where both the transmit-
ter and receiver employ an eight-element ULA. The
matched-filter output follows a multiple-snapshot 2-D
undamped HR model [2], namely, (1) with R¼2, M1 ¼

M2 ¼ 8 and N¼20. The spatial frequencies mðrÞi , r¼1,2,
i¼ 1, . . . ,d, are given by

mð1Þi ¼ p cos ðyðRÞi Þ, ð36Þ

mð2Þi ¼ p cos ðyðTÞi Þ, ð37Þ

where yðRÞi and yðTÞi are the azimuth of arrival and depar-
ture of the i-th source, respectively.

In Fig. 2, the PoDs versus SNR of different order
selection rules are compared for d¼3 sources, where the
correlation coefficients of the colored noise are set as
r1 ¼ r2 ¼ 0:125. We see that R-D ESTER I has almost the
same PoD as the original one, while R-D ESTER II sig-
nificantly outperforms [35]. In Fig. 3, the number of
sources is increased to 5, and the improvement of R-D
ESTER II over the original one is more obvious. Note that
the PoDs of R-D ESTER methods are higher than those of
all ESTER 1, ESTER 2, and ESTER 3. Note also that the R-D
MDL/AIC and R-D RMT cannot attain a PoD of 1 even at
high SNRs due to over-enumeration.
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In Fig. 4, we have the same scenario as in Fig. 3, except
that instead of a low noise correlation level, here we use a
high noise correlation level of r1 ¼ r2 ¼ 0:8. We see that R-
D ESTER I outperforms [35] as well as all ESTER 1, ESTER 2,
and ESTER 3, regardless of the noise level, while R-D ESTER
II performs poorly and is inferior to [35]. For such strongly
correlated colored noise, the R-D MDL/AIC/RMT that is
designed for white noise totally fail.

Next, we consider a scenario where the transmitter
employs a 6-element ULA, while the receiver employs a
6�6-element URA. The matched-filter output follows a
multiple-snapshot 3-D undamped HR model [2], namely,
(1) with R¼3, M1 ¼M2 ¼M3 ¼ 6 and N¼20. The spatial
frequencies mðrÞi , r¼ 1,2,3, i¼ 1, . . . ,d, are determined by

mð1Þi ¼ p cos ðyðRÞi Þ cos ðaðRÞi Þ, ð38Þ

mð2Þi ¼ p sin ðyðRÞi Þ cos ðaðRÞi Þ, ð39Þ

mð3Þi ¼ p cos ðyðTÞi Þ, ð40Þ
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Fig. 4. PoD versus SNR of Swerling II targets for source localization in

multiple-pulse, bistatic MIMO radar system. The parameter settings are

the same as those in Fig. 3 except that r1 ¼ r2 ¼ 0:8.
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Fig. 5. PoD versus noise correlation level rr in colored noise environ-

ment. R¼3, M1 ¼M2 ¼M3 ¼ 6, N¼20, d¼3. SNR¼30 dB.
where yðRÞi , aðRÞi and yðTÞi are the azimuth of arrival, eleva-
tion of arrival and azimuth of departure, respectively.

In Fig. 5, the order selection rules are evaluated for
various noise correlation levels at a fixed SNR¼30 dB and
d¼3. Here, the correlation coefficients along different
dimensions are equal to each other and vary from 0 to
0.999. We see that with the increase of the noise correla-
tion levels, the R-D ESTER I and 1-D ESTERs maintain
constant detection performance whereas all other
schemes suffer performance degradation to a certain
extent. While the original R-D ESTER experiences a slight
performance degradation only for high correlation levels,
the R-D MDL/AIC/RMT drops sharply in performance and
totally fails for rr 40:3. For the R-D ESTER II, it performs
best for a wide range of low-to-moderate noise correla-
tion levels of rr o0:7. However, for high noise correlation
levels, it drops sharply in PoD and is inferior to the R-D
ESTER I and [35] when rr 40:8 i. This indicates that the
order of robustness against colored noise is: R-D ESTER I
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(1-D ESTERs) 4 original R-D ESTER4R-D ESTER rmIIb

R-D MDL/AIC/RMT.
In Fig. 6, the correlation coefficients of the colored noise

are fixed as r1 ¼ r2 ¼ r3 ¼ 0:125 while the SNR varies.
We see that the R-D ESTER II performs best and remarkably
outperforms [35] as well as other methods. In Fig. 7, the noise
correlation level is increased to r1 ¼ r2 ¼ r3 ¼ 0:8. In such a
strongly correlated colored noise scenario, the R-D ESTER I is
instead the best performing method. These observations are
consistent with those obtained in Figs. 2–4 and Fig. 5, which
implies that the R-D ESTER I has strongest robustness, while
the R-D ESTER II is less robust against colored noise but is
optimal for weakly-to-moderately correlated colored noise
scenarios.

Next, we change the antenna array sizes such that
M1 ¼ 7, M2 ¼ 5, M3 ¼ 9. For such a 3-D array of distinct
sizes, both R-D ESTER schemes can identify M1�2¼ 7
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Fig. 8. PoD versus SNR of Swerling II targets for source localization in

multiple-pulse, bistatic MIMO radar system. R¼3, M1 ¼ 7, M2 ¼ 5, M3 ¼ 9,

N¼20, d¼5. The noise correlation coefficients are r1 ¼r2 ¼ r3 ¼ 0:125.
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Fig. 9. PoD versus SNR of Swerling II targets for source localization in

multiple-pulse, bistatic MIMO radar system. R¼3, M1 ¼ 7, M2 ¼ 5, M3 ¼ 9,

N¼20, d¼5. The noise correlation coefficients are r1 ¼r2 ¼ r3 ¼ 0:8.
sources, while the original R-D ESTER can only identify
M2�2¼ 3 sources.

In Figs. 8 and 9, different order selection rules are
assessed for five sources at low-to-moderate and high noise
correlation levels, respectively. We see that the original R-D
ESTER fails to work. In contrast, the R-D ESTER I and R-D
ESTER II respectively works well in weakly-to-moderately
and strongly correlated colored noise scenarios, and attain a
PoD of 1 at sufficiently high SNRs.

Finally, we consider a scenario where both the transmitter
and receiver employ a 5�5-element URA. The matched-filter
output obeys a multiple-snapshot 4-D undamped HR model
[2], namely, (1) with R¼4, M1 ¼M2 ¼M3 ¼M4 ¼ 5 and
N¼20. The spatial frequencies mðrÞi , r¼ 1,2,3,4, i¼ 1, . . . ,d,
are given by

mð1Þi ¼ p cos ðyðRÞi Þ cos ðaðRÞi Þ, ð41Þ

mð2Þi ¼ p sin ðyðRÞi Þ cos ðaðRÞi Þ, ð42Þ

mð3Þi ¼ p cos ðyðTÞi Þ cos ðaðTÞi Þ, ð43Þ

mð4Þi ¼ p sin ðyðTÞi Þ cos ðaðTÞi Þ, ð44Þ

where yðRÞi , aðRÞi , yðTÞi and aðTÞi denote the azimuth of arrival,
elevation of arrival, azimuth of departure and elevation of
departure, respectively.

In Figs. 10 and 11, different order selection rules are
assessed for two sources at low-to-moderate and high
noise correlation levels, respectively. Again, the R-D ESTER
I performs comparably to or better than the original R-D
ESTER for all noise correlation levels. For R-D ESTER II, it is
superior to the original R-D ESTER by a considerable
margin for low-to-moderate noise correlation levels,
while inferior to the latter for high noise correlation
levels. This confirms the weaker robustness of the R-D
ESTER II with respect to the R-D ESTER I and original R-D
ESTER methods.
−20 −10 0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR [dB]

P
r (

d 
= 

d)
ˆ

R−D MDL
R−D AIC
R−D RMT
ESTER 1
ESTER 2
ESTER 3
ESTER 4
Original R−D ESTER
Proposed R−D ESTER I
Proposed R−D ESTER II

Fig. 10. PoD versus SNR of Swerling II targets for source localization in

multiple-pulse, bistatic MIMO radar system. R¼4, M1 ¼M2 ¼M3 ¼M4 ¼ 5.

The number of pulse in each CPI is N¼20. d¼2. The noise correlation

coefficients are r1 ¼ r2 ¼r3 ¼ r4 ¼ 0:125.
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Fig. 12. PoD versus SNR of Swerling I targets for source localization

in multiple-pulse, bistatic MIMO radar system. R¼2, M1 ¼M2 ¼ 8.

The number of pulse in each CPI is N¼8. d¼5.
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Fig. 11. PoD versus SNR of Swerling II targets for source localization in

multiple-pulse, bistatic MIMO radar system. The parameter settings are

the same as those in Fig. 10 except that r1 ¼ r2 ¼r3 ¼r4 ¼ 0:8.
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Fig. 13. PoD versus SNR for channel parameter estimation from multi-

dimensional channel sounding measurements. The parameter settings

are the same as those in Fig. 12.
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6.1.2. Swerling I target model

Consider the scenario where both the transmitter and
receiver employ an eight-element ULA, with eight pulses
in each CPI. The matched-filter output corresponds to a
single-snapshot 3-D undamped HR model [2], namely, (1)
with R¼3, M1 ¼M2 ¼M3 ¼ 8 and siðnÞ ¼ bi. The spatial
frequencies mðrÞi , r¼ 1,2,3, i¼ 1, . . . ,d, are given by

mð1Þi ¼ p cos ðyðRÞi Þ, ð45Þ

mð2Þi ¼ p cos ðyðTÞi Þ, ð46Þ

mð3Þi ¼ wi, ð47Þ

where wi is the Doppler shift determined by (35). As in [2],
we assume that the target velocity is uniformly distrib-
uted in ½0,l=ð10 � 2TpÞ� ¼ ½0,3000�, such that wi5p is uni-
formly distributed in ½0,p=10�.

Since Að3Þ has a Vandermonde structure, the R-D ESTER I
can exploit the third matrix unfolding as well. For ease of
distinction, we denote the R-D ESTER I that exploits the
third unfolding and the one without exploiting the third
unfolding as ‘‘R-D ESTER I (Rþ1)’’ and ‘‘R-D ESTER I (R)’’,
respectively. In Fig. 12, we plot the result for five sources
and strongly correlated noise of r1 ¼ r2 ¼ r3 ¼ 0:8. We see
that the ESTER 3 that applies to the third unfolding performs
poorly due to frequent under-enumeration and the ‘‘R-D
ESTER I (Rþ1)’’ is inferior to ‘‘R-D ESTER I (R)’’. This is not
unexpected, considering that the Doppler shifts of different
sources are so small that Að3Þ is nearly rank deficient.
Therefore, in such a scenario, it is preferred not to use the
third unfolding.

6.2. Simulation scenario II: Wireless channel sounding

Consider a stationary wireless scenario where there is
no Doppler shift. When uniform linear transmit and
receive arrays are employed, the baseband-equivalent
channel sounding measurements after ideal low-pass
filtering follow a single-snapshot 3-D undamped HR
model, where the frequencies mðrÞi , r¼ 1,2,3, i¼ 1, . . . ,d,
in (1) are given by [1,4]

mð1Þi ¼ p cos ðyðRÞi Þ, ð48Þ

mð2Þi ¼ p cos ðyðTÞi Þ, ð49Þ

mð3Þi ¼ 2pti=N: ð50Þ

Here yðRÞi , yðTÞi and ti are the azimuth of arrival, azimuth of
departure and propagation delay measured in samples of
the i-th source, respectively. The azimuths are assumed to
be drawn from a uniform distribution in ½�p,p�, and the
propagation delay is assumed to be drawn from a uniform
distribution in ½0,N�1�.

In Figs. 13 and 14, different order selection rules are
assessed for five sources at low-to-moderate and high
noise correlation levels, respectively. In contrast to Fig. 12,
since Að3Þ is no longer a rank deficient matrix, the ‘‘R-D
ESTER I (Rþ1)’’ that exploits the third unfolding is
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Fig. 14. PoD versus SNR for channel parameter estimation from multi-

dimensional channel sounding measurements. The parameter settings

are the same as those in Fig. 12.
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superior to ‘‘R-D ESTER I (R)’’ without exploiting the third
unfolding.

7. Conclusion

We propose two multidimensional extensions of the
subspace based 1-D estimation error (ESTER) rule for
estimating the number of multidimensional signals in
colored noise. Our schemes take into account the multi-
dimensional structure of the data and hence considerably
outperforms the matrix-based 1-D ESTER. The R-D ESTER I
combines R sets of eigenvectors of the higher-order SVD
of the measurement tensor based on R matrix shift
invariance equations in all modes. It preserves the inher-
ent structure of the matrix-based ESTER with enhanced
robustness against colored noise, and outperforms the
state-of-the-art R-D ESTER scheme particularly in strongly
correlated colored noise environment. To further improve
the performance at low-to-moderate noise correlation
levels, the R-D ESTER II is developed based on the tensor
shift invariance equation. It is the best performing
method for a wide range of weakly and moderately
correlated colored noise scenarios. However, for high
noise correlation levels, it is inferior to the existing
schemes. Both of our proposed extensions can identify
considerably more signals the existing R-D ESTER scheme
when the spatial dimension lengths are distinct from
each other.

Appendix A

In order to prove the global equation in (20), we apply
the method of induction. For r¼1, it holds that

A�1 Jð1Þ1 �Rþ1U
ð1Þ
¼A�1 Jð1Þ2 : ðA:1Þ

Suppose for a certain rZ1, we have

A�1 Jð1Þ1 � � � �r JðrÞ1 �Rþ1

Yr

i ¼ 1

UðiÞ ¼A�1 Jð1Þ2 � � � �r JðrÞ2 : ðA:2Þ
Then for rþ1,

A�1 Jð1Þ2 � � � �r JðrÞ2 �rþ1 Jðrþ1Þ
2

¼ A�1 Jð1Þ1 � � � �r JðrÞ1 �Rþ1

Yr

i ¼ 1

UðiÞ
 !

�rþ1 Jðrþ1Þ
2

¼ ðA�rþ1 Jðrþ1Þ
2 Þ�1 Jð1Þ1 � � � �r JðrÞ1 �Rþ1

Yr

i ¼ 1

UðiÞ

¼ ðA�rþ1 Jðrþ1Þ
1 �Rþ1U

ðrþ1Þ
Þ�1 Jð1Þ1 � � � �r JðrÞ1 �Rþ1

Yr

i ¼ 1

UðiÞ

¼A�1 Jð1Þ1 � � � �r JðrÞ1 �rþ1 Jðrþ1Þ
1 �Rþ1

Yrþ1

r ¼ 1

UðrÞ: ðA:3Þ

This completes the proof.
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